Expanding the shape of an operand in a matrix math operation to dimensions compatible for that operation. For instance, linear algebra requires that the two operands in a matrix addition operation must have the same dimensions. Consequently, you can’t add a matrix of shape (m, n) to a vector of length n. Broadcasting enables this operation by virtually expanding the vector of length n to a matrix of shape (m,n) by replicating the same values down each column.
For example, given the following definitions, linear algebra prohibits A+B because A and B have different dimensions:
A = [[7, 10, 4],
[13, 5, 9]]
B = [2]
However, broadcasting enables the operation A+B by virtually expanding B to:
[[2, 2, 2],
[2, 2, 2]]
Thus, A+B is now a valid operation:
[[7, 10, 4], + [[2, 2, 2], = [[ 9, 12, 6],
[13, 5, 9]] [2, 2, 2]] [15, 7, 11]]
See the following description of broadcasting in NumPy for more details.
Add comment